Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 134(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38690736

ABSTRACT

Pain and inflammation are biologically intertwined responses that warn the body of potential danger. In this issue of the JCI, Defaye, Bradaia, and colleagues identified a functional link between inflammation and pain, demonstrating that inflammation-induced activation of stimulator of IFN genes (STING) in dorsal root ganglia nociceptors reduced pain-like behaviors in a rodent model of inflammatory pain. Utilizing mice with a gain-of-function STING mutation, Defaye, Bradaia, and colleagues identified type I IFN regulation of voltage-gated potassium channels as the mechanism of this pain relief. Further investigation into mechanisms by which proinflammatory pathways can reduce pain may reveal druggable targets and insights into new approaches for treating persistent pain.


Subject(s)
Ganglia, Spinal , Membrane Proteins , Pain , Animals , Mice , Ganglia, Spinal/metabolism , Pain/genetics , Pain/metabolism , Pain/immunology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Humans , Nociceptors/metabolism , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism , Potassium Channels, Voltage-Gated/immunology , Interferon Type I/metabolism , Interferon Type I/genetics , Interferon Type I/immunology
2.
Pain ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38595206

ABSTRACT

ABSTRACT: Nociplastic pain, characterized by abnormal pain processing without an identifiable organic cause, affects a significant portion of the global population. Unfortunately, current pharmacological treatments for this condition often prove ineffective, prompting the need to explore new potential targets for inducing analgesic effects in patients with nociplastic pain. In this context, toll-like receptors (TLRs), known for their role in the immune response to infections, represent promising opportunities for pharmacological intervention because they play a relevant role in both the development and maintenance of pain. Although TLRs have been extensively studied in neuropathic and inflammatory pain, their specific contributions to nociplastic pain remain less clear, demanding further investigation. This review consolidates current evidence on the connection between TLRs and nociplastic pain, with a specific focus on prevalent conditions like fibromyalgia, stress-induced pain, sleep deprivation-related pain, and irritable bowel syndrome. In addition, we explore the association between nociplastic pain and psychiatric comorbidities, proposing that modulating TLRs can potentially alleviate both pain syndromes and related psychiatric disorders. Finally, we discuss the potential sex differences in TLR signaling, considering the higher prevalence of nociplastic pain among women. Altogether, this review aims to shed light on nociplastic pain, its underlying mechanisms, and its intriguing relationship with TLR signaling pathways, ultimately framing the potential therapeutic role of TLRs in addressing this challenging condition.

3.
Eur J Pharmacol ; 974: 176616, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38679122

ABSTRACT

The purpose of this study was to investigate the mechanisms underlying sex differences in the role of spinal α6-subunit containing GABAA (α6GABAA) receptors in rats with neuropathic pain. Intrathecal 2,5-dihydro-7-methoxy-2-(4-methoxyphenyl)-3H-pyrazolo [4,3-c] quinoline-3-one (PZ-II-029, positive allosteric modulator of α6GABAA receptors) reduced tactile allodynia in female but not in male rats with neuropathic pain. PZ-II-029 was also more effective in females than males in inflammatory and nociplastic pain. Ovariectomy abated the antiallodynic effect of PZ-II-029 in neuropathic rats, whereas 17ß-estradiol or 4,4',4''-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), estradiol receptor-α agonist, restored the effect of PZ-II-029 in ovariectomized rats. Blockade of estradiol receptor-α, using MPP (1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy) phenol]-1H-pyrazole dihydrochloride), prevented the effect of 17ß-estradiol on PZ-II-029-induced antiallodynia in ovariectomized neuropathic females. Nerve injury reduced α6GABAA receptor protein expression at the dorsal root ganglia (DRG) and spinal cord of intact and ovariectomized female rats. In this last group, reconstitution with 17ß-estradiol fully restored its expression in DRG and spinal cord. In male rats, nerve injury reduced α6GABAA receptor protein expression only at the spinal cord. Nerve injury enhanced estradiol receptor-α protein expression at the DRG in intact non-ovariectomized rats. However, ovariectomy decreased estradiol receptor-α protein expression at the DRG. In the spinal cord there were no changes in estradiol receptor-α protein expression. 17ß-estradiol restored estradiol receptor-α protein expression at the DRG and increased it at the spinal cord of neuropathic rats. These data suggest that 17ß-estradiol modulates the expression and function of the α6GABAA receptor through its interaction with estradiol receptor-α in female rats.

4.
Methods Cell Biol ; 185: 197-224, 2024.
Article in English | MEDLINE | ID: mdl-38556449

ABSTRACT

Traumatic brain injury (TBI) represents one of the leading causes of disability and death worldwide. The annual economic impact of TBI-including direct and indirect costs-is high, particularly impacting low- and middle-income countries. Despite extensive research, a comprehensive understanding of the primary and secondary TBI pathophysiology, followed by the development of promising therapeutic approaches, remains limited. These fundamental caveats in knowledge have motivated the development of various experimental models to explore the molecular mechanisms underpinning the pathogenesis of TBI. In this context, the Lateral Fluid Percussion Injury (LFPI) model produces a brain injury that mimics most of the neurological and systemic aspects observed in human TBI. Moreover, its high reproducibility makes the LFPI model one of the most widely used rodent-based TBI models. In this chapter, we provide a detailed surgical protocol of the LFPI model used to induce TBI in adult Wistar rats. We further highlight the neuroscore test as a valuable tool for the evaluation of TBI-induced sensorimotor consequences and their severity in rats. Lastly, we briefly summarize the current knowledge on the pathological aspects and functional outcomes observed in the LFPI-induced TBI model in rodents.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Rats , Humans , Animals , Percussion/adverse effects , Percussion/methods , Reproducibility of Results , Rats, Wistar , Disease Models, Animal , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , Brain Injuries/complications , Brain Injuries/pathology
5.
Proc Natl Acad Sci U S A ; 120(47): e2305215120, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37972067

ABSTRACT

Transmembrane Cav2.2 (N-type) voltage-gated calcium channels are genetically and pharmacologically validated, clinically relevant pain targets. Clinical block of Cav2.2 (e.g., with Prialt/Ziconotide) or indirect modulation [e.g., with gabapentinoids such as Gabapentin (GBP)] mitigates chronic pain but is encumbered by side effects and abuse liability. The cytosolic auxiliary subunit collapsin response mediator protein 2 (CRMP2) targets Cav2.2 to the sensory neuron membrane and regulates their function via an intrinsically disordered motif. A CRMP2-derived peptide (CBD3) uncouples the Cav2.2-CRMP2 interaction to inhibit calcium influx, transmitter release, and pain. We developed and applied a molecular dynamics approach to identify the A1R2 dipeptide in CBD3 as the anchoring Cav2.2 motif and designed pharmacophore models to screen 27 million compounds on the open-access server ZincPharmer. Of 200 curated hits, 77 compounds were assessed using depolarization-evoked calcium influx in rat dorsal root ganglion neurons. Nine small molecules were tested electrophysiologically, while one (CBD3063) was also evaluated biochemically and behaviorally. CBD3063 uncoupled Cav2.2 from CRMP2, reduced membrane Cav2.2 expression and Ca2+ currents, decreased neurotransmission, reduced fiber photometry-based calcium responses in response to mechanical stimulation, and reversed neuropathic and inflammatory pain across sexes in two different species without changes in sensory, sedative, depressive, and cognitive behaviors. CBD3063 is a selective, first-in-class, CRMP2-based peptidomimetic small molecule, which allosterically regulates Cav2.2 to achieve analgesia and pain relief without negative side effect profiles. In summary, CBD3063 could potentially be a more effective alternative to GBP for pain relief.


Subject(s)
Chronic Pain , Peptidomimetics , Rats , Animals , Chronic Pain/drug therapy , Chronic Pain/metabolism , Rats, Sprague-Dawley , Peptidomimetics/pharmacology , Calcium/metabolism , Calcium Channels, N-Type/genetics , Calcium Channels, N-Type/metabolism , Sensory Receptor Cells/metabolism , Ganglia, Spinal/metabolism
6.
Eur J Pharmacol ; 952: 175804, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37244377

ABSTRACT

Chronic stress affects millions of people around the world, and it can trigger different behavioral disorders like nociceptive hypersensitivity and anxiety, among others. However, the mechanisms underlaying these chronic stress-induced behavioral disorders have not been yet elucidated. This study was designed to understand the role of high-mobility group box-1 (HMGB1) and toll-like receptor 4 (TLR4) in chronic stress-induced nociceptive hypersensitivity. Chronic restraint stress induced bilateral tactile allodynia, anxiety-like behaviors, phosphorylation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (p38MAPK) and activation of spinal microglia. Moreover, chronic stress enhanced HMGB1 and TLR4 protein expression at the dorsal root ganglion, but not at the spinal cord. Intrathecal injection of HMGB1 or TLR4 antagonists reduced tactile allodynia and anxiety-like behaviors induced by chronic stress. Additionally, deletion of TLR4 diminished the establishment of chronic stress-induced tactile allodynia in male and female mice. Lastly, the antiallodynic effect of HMGB1 and TLR4 antagonists were similar in stressed male and female rats and mice. Our results suggest that chronic restraint stress induces nociceptive hypersensitivity, anxiety-like behaviors, and up-regulation of spinal HMGB1 and TLR4 expression. Blockade of HMGB1 and TLR4 reverses chronic restraint stress-induced nociceptive hypersensitivity and anxiety-like behaviors and restores altered HMGB1 and TLR4 expression. The antiallodynic effects of HMGB1 and TLR4 blockers in this model are sex independent. TLR4 could be a potential pharmacological target for the treatment of the nociceptive hypersensitivity associated with widespread chronic pain.


Subject(s)
HMGB1 Protein , Hyperalgesia , Animals , Female , Male , Mice , Rats , Alarmins/metabolism , Chronic Disease , HMGB1 Protein/metabolism , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Hyperalgesia/metabolism , Nociception , p38 Mitogen-Activated Protein Kinases/metabolism , Spinal Cord , Toll-Like Receptor 4/metabolism
7.
Pain ; 164(5): 948-966, 2023 05 01.
Article in English | MEDLINE | ID: mdl-36001074

ABSTRACT

ABSTRACT: The loss of GABAergic inhibition is a mechanism that underlies neuropathic pain. Therefore, rescuing the GABAergic inhibitory tone through the activation of GABA A receptors is a strategy to reduce neuropathic pain. This study was designed to elucidate the function of the spinal α 6 -containing GABA A receptor in physiological conditions and neuropathic pain in female and male rats. Results show that α 6 -containing GABA A receptor blockade or transient α 6 -containing GABA A receptor knockdown induces evoked hypersensitivity and spontaneous pain in naive female rats. The α 6 subunit is expressed in IB4 + and CGRP + primary afferent neurons in the rat spinal dorsal horn and dorsal root ganglia but not astrocytes. Nerve injury reduces α 6 subunit protein expression in the central terminals of the primary afferent neurons and dorsal root ganglia, whereas intrathecal administration of positive allosteric modulators of the α 6 -containing GABA A receptor reduces tactile allodynia and spontaneous nociceptive behaviors in female, but not male, neuropathic rats and mice. Overexpression of the spinal α 6 subunit reduces tactile allodynia and restores α 6 subunit expression in neuropathic rats. Positive allosteric modulators of the α 6 -containing GABA A receptor induces a greater antiallodynic effect in female rats and mice compared with male rats and mice. Finally, α 6 subunit is expressed in humans. This receptor is found in CGRP + and P2X3 + primary afferent fibers but not astrocytes in the human spinal dorsal horn. Our results suggest that the spinal α 6 -containing GABA A receptor has a sex-specific antinociceptive role in neuropathic pain, suggesting that this receptor may represent an interesting target to develop a novel treatment for neuropathic pain.


Subject(s)
Neuralgia , Receptors, GABA-A , Male , Rats , Female , Mice , Humans , Animals , Receptors, GABA-A/metabolism , Hyperalgesia , Calcitonin Gene-Related Peptide/metabolism , Spinal Cord Dorsal Horn/metabolism
8.
Nitric Oxide ; 129: 82-101, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36280191

ABSTRACT

The systemic cardiovascular effects of major trauma, especially neurotrauma, contribute to death and permanent disability in trauma patients and treatments are needed to improve outcomes. In some trauma patients, dysfunction of the autonomic nervous system produces a state of adrenergic overstimulation, causing either a sustained elevation in catecholamines (sympathetic storm) or oscillating bursts of paroxysmal sympathetic hyperactivity. Trauma can also activate innate immune responses that release cytokines and damage-associated molecular patterns into the circulation. This combination of altered autonomic nervous system function and widespread systemic inflammation produces secondary cardiovascular injury, including hypertension, damage to cardiac tissue, vascular endothelial dysfunction, coagulopathy and multiorgan failure. The gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) are small gaseous molecules with potent effects on vascular tone regulation. Exogenous NO (inhaled) has potential therapeutic benefit in cardio-cerebrovascular diseases, but limited data suggests potential efficacy in traumatic brain injury (TBI). H2S is a modulator of NO signaling and autonomic nervous system function that has also been used as a drug for cardio-cerebrovascular diseases. The inhaled gases NO and H2S are potential treatments to restore cardio-cerebrovascular function in the post-trauma period.


Subject(s)
Cardiovascular Diseases , Cardiovascular System , Gasotransmitters , Hydrogen Sulfide , Humans , Hydrogen Sulfide/therapeutic use , Hydrogen Sulfide/pharmacology , Nitric Oxide , Gasotransmitters/therapeutic use
9.
Metab Brain Dis ; 37(6): 1863-1874, 2022 08.
Article in English | MEDLINE | ID: mdl-35759072

ABSTRACT

Hydrogen sulfide (H2S) is a gasotransmitter endogenously synthesized by cystathionine-γ-lyase (CSE), cystathionine-ß-synthase (CBS), and 3-mercaptopiruvate sulfurtransferase (3-MST) enzymes. H2S exogenous administration prevents the development of hemodynamic impairments after traumatic brain injury (TBI). Since the hypothalamus and the brainstem highly regulate the cardiovascular system, this study aimed to evaluate the effect of NaHS subchronic treatment on the changes of H2S-sythesizing enzymes in those brain areas after TBI and in physiological conditions. For that purpose, animals were submitted to a lateral fluid percussion injury, and the changes in CBS, CSE, and 3-MST protein expression were measured by western blot at days 1, 2, 3, 7, and 28 in the vehicle group, and 7 and 28 days after NaHS treatment. After severe TBI induction, we found a decrease in CBS and CSE protein expression in the hypothalamus and brainstem; meanwhile, 3-MST protein expression diminished only in the hypothalamus compared to the Sham group. Remarkably, i.p. daily injections of NaHS, an H2S donor, (3.1 mg/kg) during seven days: (1) restored CBS and CSE but no 3-MST protein expression in the hypothalamus at day 28 post-TBI; (2) reestablished only CSE in brainstem 7 and 28 days after TBI; and (3) did not modify H2S-sythesizing enzymes protein expression in uninjured animals. Mainly, our results show that the NaHS effect on CBS and CSE protein expression is observed in a time- and tissue-dependent manner with no effect on 3-MST expression, which may suggest a potential role of H2S synthesis in hypothalamus and brainstem impairments observed after TBI.


Subject(s)
Brain Injuries, Traumatic , Hydrogen Sulfide , Animals , Brain Injuries, Traumatic/drug therapy , Brain Stem , Cystathionine , Cystathionine beta-Synthase/metabolism , Hydrogen Sulfide/pharmacology , Hypothalamus/metabolism
10.
Physiol Rep ; 9(16): e14984, 2021 08.
Article in English | MEDLINE | ID: mdl-34409771

ABSTRACT

Chronic pain is an incapacitating condition that affects a large population worldwide. Until now, there is no drug treatment to relieve it. The impairment of GABAergic inhibition mediated by GABAA receptors (GABAA R) is considered a relevant factor in mediating chronic pain. Even though both synaptic and extrasynaptic GABAA inhibition are present in neurons that process nociceptive information, the latter is not considered relevant as a target for the development of pain treatments. In particular, the extrasynaptic α5 GABAA Rs are expressed in laminae I-II of the spinal cord neurons, sensory neurons, and motoneurons. In this review, we discuss evidence showing that blockade of the extrasynaptic α5 GABAA Rs reduces mechanical allodynia in various models of chronic pain and restores the associated loss of rate-dependent depression of the Hoffmann reflex. Furthermore, in healthy animals, extrasynaptic α5 GABAA R blockade induces both allodynia and hyperalgesia. These results indicate that this receptor may have an antinociceptive and pronociceptive role in healthy and chronic pain-affected animals, respectively. We propose a hypothesis to explain the relevant role of the extrasynaptic α5 GABAA Rs in the processing of nociceptive information. The data discussed here strongly suggest that this receptor could be a valid pharmacological target to treat chronic pain states.


Subject(s)
Chronic Pain/metabolism , Receptors, GABA-A/metabolism , Spinal Cord/metabolism , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Chronic Pain/drug therapy , Chronic Pain/physiopathology , GABA-A Receptor Antagonists/pharmacology , GABA-A Receptor Antagonists/therapeutic use , Humans , Nociception , Spinal Cord/drug effects , Spinal Cord/physiopathology
11.
Drug Dev Res ; 81(6): 728-735, 2020 09.
Article in English | MEDLINE | ID: mdl-32394536

ABSTRACT

Ceftriaxone (CFX) is a ß-lactam antibiotic with analgesic properties. However, its role in the formalin-induced nociception remains unknown. The purpose of this study was to investigate the antinociceptive effect of CFX in the 1% formalin test in rats. Formalin induced a typical nociceptive response (flinching behavior) of two phases. Local peripheral pretreatment (20 min) with CFX (400-800 µg/paw) slightly attenuated the flinching behavior in phase 2, but not phase 1. Acute intraperitoneal pretreatment (20 min) also reduced phase 2 of the formalin test. In both cases, CFX induced a dose-dependent antinociception. We also tested the effect of CFX 1 day after its administration and in two schedules of repeated administration. One-day pretreatment with CFX (50-400 mg/kg, ip) induced a dose-dependent antinociceptive effect in formalin-treated rats. Repeated administration (daily during 3 or 7 days) with CFX (50-400 mg/kg, ip) diminished formalin-induced nociception. Results suggest that local or systemic as well as single or repeated administration of CFX reduces formalin-induced nociception.


Subject(s)
Analgesics/administration & dosage , Anti-Bacterial Agents/administration & dosage , Ceftriaxone/administration & dosage , Nociception/drug effects , Pain/drug therapy , Animals , Drug Administration Schedule , Female , Formaldehyde , Injections, Intraperitoneal , Pain/chemically induced , Rats, Wistar
12.
Eur J Pharmacol ; 858: 172443, 2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31181208

ABSTRACT

The role of spinal α5 subunit-containing GABAA (α5-GABAA) receptors in chronic pain is controversial. The purpose of this study was to investigate the participation of spinal α5-GABAA receptors in the reserpine-induced pain model. Reserpine administration induced tactile allodynia and muscle hyperalgesia in female and male rats. Intrathecal injection of L-655,708 and TB 21007 (7 days after the last reserpine injection) decreased tactile allodynia and, at a lesser extent, muscle hyperalgesia in female rats. The effects of these drugs produced a lower antiallodynic and antihyperalgesic effect in male than in female rats. Contrariwise, these drugs produced tactile allodynia and muscle hyperalgesia in naïve rats and these effects were lower in naïve male than female rats. Intrathecal L-838,417 prevented or reversed L-655,708-induced antiallodynia in reserpine-treated female rats. Repeated treatment with α5-GABAA receptor small interfering RNA (siRNA), but not scramble siRNA, reduced reserpine-induced allodynia in female rats. Accordingly, α5-GABAA receptor siRNA induced nociceptive hypersensitivity in naïve female rats. Reserpine enhanced α5-GABAA receptors expression in spinal cord and dorsal root ganglia (DRG), while it increased CD11b (OX-42) and glial fibrillary acidic protein (GFAP) fluorescence intensity in the lumbar spinal cord. In contrast, reserpine diminished K+-Cl- co-transporter 2 (KCC2) protein in the lumbar spinal cord. Data suggest that spinal α5-GABAA receptors play a sex-dependent proallodynic effect in reserpine-treated rats. In contrast, these receptors have a sex-dependent antiallodynic role in naïve rats.


Subject(s)
Fibromyalgia/complications , Pain/complications , Pain/drug therapy , Receptors, GABA-A/metabolism , Reserpine/pharmacology , Animals , Astrocytes/drug effects , Astrocytes/pathology , Female , Ganglia, Spinal/drug effects , Ganglia, Spinal/metabolism , Gene Expression Regulation/drug effects , Hyperalgesia/drug therapy , Hyperalgesia/metabolism , Male , Microglia/drug effects , Microglia/pathology , Pain/chemically induced , Pain/pathology , Rats , Rats, Wistar , Spinal Cord/drug effects , Spinal Cord/metabolism , Symporters/metabolism , K Cl- Cotransporters
SELECTION OF CITATIONS
SEARCH DETAIL
...